Similarity Measures for Text Document Clustering
نویسنده
چکیده
Clustering is a useful technique that organizes a large quantity of unordered text documents into a small number of meaningful and coherent clusters, thereby providing a basis for intuitive and informative navigation and browsing mechanisms. Partitional clustering algorithms have been recognized to be more suitable as opposed to the hierarchical clustering schemes for processing large datasets. A wide variety of distance functions and similarity measures have been used for clustering, such as squared Euclidean distance, cosine similarity, and relative entropy. In this paper, we compare and analyze the effectiveness of these measures in partitional clustering for text document datasets. Our experiments utilize the standard Kmeans algorithm and we report results on seven text document datasets and five distance/similarity measures that have been most commonly used in text clustering.
منابع مشابه
خوشهبندی اسناد مبتنی بر آنتولوژی و رویکرد فازی
Data mining, also known as knowledge discovery in database, is the process to discover unknown knowledge from a large amount of data. Text mining is to apply data mining techniques to extract knowledge from unstructured text. Text clustering is one of important techniques of text mining, which is the unsupervised classification of similar documents into different groups. The most important step...
متن کاملA Joint Semantic Vector Representation Model for Text Clustering and Classification
Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...
متن کاملSYDE 676 Project Report – Fall 2002 Web Document Clustering Using Phrase-based Document Similarity
Measuring the similarity between documents is an essential operation in text mining, especially document clustering. The traditional method of finding the similarity between documents has always been based on extracting individual words from the documents, and using heuristics to give weights to those features. Standard methods in data mining are then used to find the similarity between documen...
متن کاملA Comparative Study of Ontology Based Term Similarity Measures on PubMed Document Clustering
Recent research shows that ontology as background knowledge can improve document clustering quality with its concept hierarchy knowledge. Previous studies take term semantic similarity as an important measure to incorporate domain knowledge into clustering process such as clustering initialization and term re-weighting. However, not many studies have been focused on how different types of term ...
متن کاملAn improved semantic similarity measure for document clustering based on topic maps
A major computational burden, while performing document clustering, is the calculation of similarity measure between a pair of documents. Similarity measure is a function that assigns a real number between 0 and 1 to a pair of documents, depending upon the degree of similarity between them. A value of zero means that the documents are completely dissimilar whereas a value of one indicates that ...
متن کامل